direct product, p-group, elementary abelian, monomial
Aliases: C52, SmallGroup(25,2)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
| C1 — C52 |
| C1 — C52 |
| C1 — C52 |
Generators and relations for C52
G = < a,b | a5=b5=1, ab=ba >
Character table of C52
| class | 1 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 5I | 5J | 5K | 5L | 5M | 5N | 5O | 5P | 5Q | 5R | 5S | 5T | 5U | 5V | 5W | 5X | |
| size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
| ρ2 | 1 | ζ54 | 1 | 1 | 1 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ54 | ζ54 | ζ54 | ζ54 | 1 | linear of order 5 |
| ρ3 | 1 | ζ53 | 1 | 1 | 1 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ53 | ζ53 | ζ53 | ζ53 | 1 | linear of order 5 |
| ρ4 | 1 | ζ52 | 1 | 1 | 1 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ52 | ζ52 | ζ52 | ζ52 | 1 | linear of order 5 |
| ρ5 | 1 | ζ5 | 1 | 1 | 1 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ5 | ζ5 | ζ5 | ζ5 | 1 | linear of order 5 |
| ρ6 | 1 | ζ54 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ5 | linear of order 5 |
| ρ7 | 1 | ζ53 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ54 | 1 | ζ5 | ζ52 | ζ5 | linear of order 5 |
| ρ8 | 1 | ζ52 | ζ52 | ζ53 | ζ54 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ53 | ζ54 | 1 | ζ5 | ζ5 | linear of order 5 |
| ρ9 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | linear of order 5 |
| ρ10 | 1 | 1 | ζ52 | ζ53 | ζ54 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | linear of order 5 |
| ρ11 | 1 | ζ53 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ52 | linear of order 5 |
| ρ12 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | linear of order 5 |
| ρ13 | 1 | ζ5 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ53 | 1 | ζ52 | ζ54 | ζ52 | linear of order 5 |
| ρ14 | 1 | 1 | ζ54 | ζ5 | ζ53 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | linear of order 5 |
| ρ15 | 1 | ζ54 | ζ54 | ζ5 | ζ53 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ5 | ζ53 | 1 | ζ52 | ζ52 | linear of order 5 |
| ρ16 | 1 | ζ52 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ53 | linear of order 5 |
| ρ17 | 1 | ζ5 | ζ5 | ζ54 | ζ52 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ54 | ζ52 | 1 | ζ53 | ζ53 | linear of order 5 |
| ρ18 | 1 | 1 | ζ5 | ζ54 | ζ52 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | linear of order 5 |
| ρ19 | 1 | ζ54 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ52 | 1 | ζ53 | ζ5 | ζ53 | linear of order 5 |
| ρ20 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | linear of order 5 |
| ρ21 | 1 | ζ5 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ54 | linear of order 5 |
| ρ22 | 1 | 1 | ζ53 | ζ52 | ζ5 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | linear of order 5 |
| ρ23 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | linear of order 5 |
| ρ24 | 1 | ζ53 | ζ53 | ζ52 | ζ5 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ52 | ζ5 | 1 | ζ54 | ζ54 | linear of order 5 |
| ρ25 | 1 | ζ52 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ5 | 1 | ζ54 | ζ53 | ζ54 | linear of order 5 |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)
(1 25 14 9 19)(2 21 15 10 20)(3 22 11 6 16)(4 23 12 7 17)(5 24 13 8 18)
G:=sub<Sym(25)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,14,9,19)(2,21,15,10,20)(3,22,11,6,16)(4,23,12,7,17)(5,24,13,8,18)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25), (1,25,14,9,19)(2,21,15,10,20)(3,22,11,6,16)(4,23,12,7,17)(5,24,13,8,18) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25)], [(1,25,14,9,19),(2,21,15,10,20),(3,22,11,6,16),(4,23,12,7,17),(5,24,13,8,18)]])
G:=TransitiveGroup(25,2);
C52 is a maximal subgroup of
C5⋊D5 C52⋊C3 He5 5- 1+2
C52 is a maximal quotient of He5 5- 1+2
Matrix representation of C52 ►in GL2(𝔽11) generated by
| 4 | 0 |
| 0 | 4 |
| 9 | 0 |
| 0 | 5 |
G:=sub<GL(2,GF(11))| [4,0,0,4],[9,0,0,5] >;
C52 in GAP, Magma, Sage, TeX
C_5^2
% in TeX
G:=Group("C5^2"); // GroupNames label
G:=SmallGroup(25,2);
// by ID
G=gap.SmallGroup(25,2);
# by ID
G:=PCGroup([2,-5,5]:ExponentLimit:=1);
// Polycyclic
G:=Group<a,b|a^5=b^5=1,a*b=b*a>;
// generators/relations
Export
Subgroup lattice of C52 in TeX
Character table of C52 in TeX